Почему разрывается связь с интернетом? Измерения. Единицы измерения

Основные причины низких шумовых характеристик

Основные причины высокого уровня шума в сигнальных системах:

Если спектр полезного сигнала отличается от спектра шума, улучшить отношение сигнал/шум можно ограничением полосы пропускания системы.

Для улучшения шумовых характеристик сложных комплексов применяются методы электромагнитной совместимости .

Измерение

В аудиотехнике отношение сигнал/шум определяют путем измерения напряжения шума и сигнала на выходе усилителя или другого звуковоспроизводящего устройства среднеквадратичным милливольтметром либо анализатором спектра. Современные усилители и другая высококачественная аудиоаппаратура имеет показатель сигнал/шум около 100-120 дБ.

В системах с более высокими требованиями используются косвенные методы измерения отношения сигнал/шум, реализуемые на специализированной аппаратуре.

В музыке

Отношение сигнал/шум - параметр усилителя активных колонок, показывает насколько сильно шумит усилитель (от 60 до 135,5 дБ), если в отсутствие сигнала выкрутить регулятор громкости на максимум. Чем больше значение сигнал/шум, тем более чистый звук обеспечивают колонки. Желательно, чтобы этот параметр был не менее 75 дБ, для мощных колонок с высококлассным звучанием не менее 90 дБ.

В видео

См. также


Wikimedia Foundation . 2010 .

  • Баррикады (ПО)
  • Гортань

Смотреть что такое "Отношение сигнал/шум" в других словарях:

    Отношение сигнал-шум - Отношение сигнал/шум (ОСШ, англ. SNR, Signal to Noise Ratio) безразмерная величина, равная отношению мощности полезного сигнала к мощности шума. Обычно выражается в децибелах. Чем больше это отношение, тем менее заметен шум. где P средняя… … Википедия

    отношение сигнал/шум - Отношение амплитуды (или энергии) сигнала, создаваемого дефектом в материале, к среднеквадратическому значению сигнала (или энергии) шума. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения …

    отношение сигнал - шум - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN signal to noise ratioS/N ratio … Справочник технического переводчика

    отношение сигнал-шум - (МСЭ T G.691; МСЭ Т G.983.2 G.991.2). Тематики электросвязь, основные понятия EN signal to noise ratioSNR … Справочник технического переводчика

    Отношение сигнал/шум G/s д - величина, характеризующая изменение градиента G на фоне оптической плотности равноэкспо нированного радиографического снимка. Источник …

    отношение сигнал-шум - 3.4 отношение сигнал шум: Отношение уровня ультразвукового сигнала к уровню «фонового» шума, выраженное в децибелах (дБ). Источник … Словарь-справочник терминов нормативно-технической документации

    отношение сигнал/шум - signalo ir triukšmo santykis statusas T sritis automatika atitikmenys: angl. signal to noise ratio vok. Signal/Rausch Verhältnis, n rus. отношение сигнал/шум, n pranc. rapport signal/bruit, m … Automatikos terminų žodynas

    отношение сигнал-шум при магнитном контроле Справочник технического переводчика

    отношение сигнал-шум при магнитном неразрушающем контроле - отношение сигнал шум Отношение пикового значения сигнала магнитного преобразователя, вызванного изменением измеряемой характеристики магнитного поля, к среднему квадратическому значению амплитуды шумов, обусловленных влиянием мешающих параметров… … Справочник технического переводчика

    отношение сигнал/шум интегральной микросхемы - отношение сигнал/шум Отношение эффективного значения выходного напряжения интегральной микросхемы, содержащего только низкочастотные составляющие, соответствующие частотам модулирующего напряжения, к эффективному значению выходного напряжения при … Справочник технического переводчика

Отношение чистого аудиосигнала к шуму, создаваемому самим устройством.

Чем значение выше (в дБ), тем лучше.

У звуковой карты Sound Blaster X-Fi значение сигнал/шум - 118 дБ.

У большинства аудиокодеков - 80-95 дБ.

Драйвер AMD Radeon Software Adrenalin Edition 19.9.2 Optional

Новая версия драйвера AMD Radeon Software Adrenalin Edition 19.9.2 Optional повышает производительность в игре «Borderlands 3» и добавляет поддержку технологии коррекции изображения Radeon Image Sharpening.

Накопительное обновление Windows 10 1903 KB4515384 (добавлено)

10 сентября 2019 г. Microsoft выпустила накопительное обновление для Windows 10 версии 1903 - KB4515384 с рядом улучшений безопасности и исправлением ошибки, которая нарушила работу Windows Search и вызвала высокую загрузку ЦП.

Драйвер Game Ready GeForce 436.30 WHQL

Компания NVIDIA выпустила пакет драйверов Game Ready GeForce 436.30 WHQL, который предназначен для оптимизации в играх: «Gears 5», «Borderlands 3» и «Call of Duty: Modern Warfare», «FIFA 20», «The Surge 2» и «Code Vein», исправляет ряд ошибок, замеченных в предыдущих релизах, и расширяет перечень дисплеев категории G-Sync Compatible.

Драйвер AMD Radeon Software Adrenalin 19.9.1 Edition

Первый сентябрьский выпуск графических драйверов AMD Radeon Software Adrenalin 19.9.1 Edition оптимизирован для игры Gears 5.

2014-03-08T21:22

2014-03-08T21:22

Audiophile"s Software

Введение

Обычно шум намного лучше слышен при использовании наушников, чем при использовании колонок, и является популярной темой жалоб именно среди владельцев наушников.

Существует множество заблуждений о том, откуда берется шум, характеристиках и методах его сравнения.

Что такое шум?

Технически шум - это всё, кроме полезного сигнала. Обычно нас интересуют шумы лишь в диапазоне от 20 Гц до 20 кГц. Внутри этого диапазона ухо более чувствительно к одним частотам, чем к другим. Наиболее распространенный слышимый шум по природе своей совершенно случаен и воспринимается как широкополосное шипение. Низкочастотный гул на частотах сети электропитания (50 или 60 Гц) также иногда может быть слышен. Все цифровые устройства, в особенности компьютеры и мобильные телефоны, могут создавать шумы на определенных частотах, воспринимаемые как скрип, щелчки, гул и т. д.

Источники шума

Слышимый шум может возникать, и зачастую возникает в сигнальном тракте, начиная с используемых при записи микрофонов. Вот наиболее распространенные его источники:

  • Звукозапись - Микрофонные предусилители и другое оборудование, используемое во время записи, часто вносит слышимые шумы. Но есть множество технологий, используемых для уменьшения их слышимости. Шумоподавление (англ. Noise Gate), например, используется для исключения шума в моменты, когда отсутствует полезный сигнал (от микрофона или инструмента). Практически все записи, сделанные до начала 80-х проходили мастеринг с использованием аналоговой пленки, которая вносит значительное шипение. И даже цифровые записи могут содержать шум, вносимый электроникой в процессе передачи и обработки сигнала. Также, само собой, высоким уровнем шума обладает винил.

  • ЦАП - теоретически идеальный 16-битный ЦАП имеет соотношение сигнал/шум равное 96 дБ, но некоторые ЦАП"ы не дотягивают до максимальных показателей 16-битного формата. 24-битные ЦАП обычно обладают точностью соответствующей всего 16-ти битам, самые же лучшие из них едва достигают 21 бит (эффективное количество двоичных разрядов). В особенности это касается ЦАП встроенных в ПК. Некоторые ЦАП также вносят большое количество собственных шумов - интермодуляций, шумов квантования (хотя их можно рассматривать как искажения, так как они имеют место только при наличии полезного сигнала).

  • Усилитель мощности - Даже нетбук или портативный плеер имеют встроенный усилитель мощности для наушников (в некоторых случаях он уже включен в чип ЦАП). Любой усилитель вносит шум, вопрос лишь в том, слышен этот шум, или нет. Даже самые дорогостоящие внешние усилители для наушников могут вносить значительное количество шума. Кроме того, конечно же, усиливаются шумы, поступающие на вход усилителя вместе с сигналом.

  • Шумы накапливаются - Хотя иногда очевиден некий основной источник шума, шум также может вноситься в равной степени несколькими компонентами. В таком случае шумы суммируются.

Замеры шумов

Пример

  • Шум в дБВ при 100% громкости - –112 дБВ unweighted и –115 дБВ A-Weighted

  • Сигнал/шум по отношению к максимальному выходу - 130 dBr unweighted и –133 dBr A-Weighted по отношению к 7 В RMS максимуму. Эти цифры впечатляют, однако далеки от реальности, так как вряд ли кому-то понадобится значение на выходе близкое к 7 В.

Чувствительность наушников

Наушники значительно различаются между собой по чувствительности. Многие полагают, что увеличение чувствительности на 10 дБ также ухудшит соотношение сигнал/шум на 10 дБ, но зачастую это неправда. Так как наушники более чувствительны, необходим меньший уровень усиления и/или меньший уровень громкости. В обоих случаях уменьшается также и уровень шумов, потому соотношение сигнала и шума, имеющегося на входе усилителя, остается неизменным. Только фиксированный шум имеет непосредственное отношение к чувствительности наушников. Тепловые шумы регулятора громкости могут также несколько усложнить ситуацию, но по мере того как чувствительность наушников растет, важность уровня фиксированного шума растет (см. выше про предельные условия).

Иногда вы можете видеть спектральный анализ шума. Средний шумовой порог на этих графиках намного меньше, чем указанный в характеристиках шум. На рисунке справа суммарный шум равен примерно –112 дБВ, но на графике шум лежит на уровне –150 дБВ. Причина такой большой разницы заключается в том, что –112 дБВ - это сумма шумовых составляющих в диапазоне от 20 Гц до 20 кГц. Представьте, что вы рассыпали стакан сахара по полу. Это несколько изменит уровень пола. Но если вы соберете весь сахар в измерительную ёмкость, то сможете определить, сколько сахара всего - так же работают и показатели в окнах на рисунке.

Частотный диапазон шума. Взвешивание

Обычно шум - это сумма мощностей в звуковой полосе частот. В идеале частотная полоса указывается для невзвешенных измерений. Взвешивание по типу A (A-weighting) часто используется для адаптации результатов под особенности человеческого слуха (различная чувствительность слуха на различных частотах), также оно ограничивает частотную полосу. Другим стандартом взвешивания является ITU-R 468 . Для оборудования, имеющего тенденцию к большому количеству ультразвукового шума, вроде усилителей класса D и цифрового оборудования, иногда могут быть полезны дополнительные широкополосные замеры шума, вплоть до 100 кГц.

Сравнение показаний шума

Непосредственно сравнивать показания можно только в dBu, дБВ или dBr, при одинаковом уровне. Во всех измерениях должен быть использован одинаковый диапазон частот и одинаковый тип взвешивания. В противном случае вы не сможете сравнивать результаты без выполнения некоторых дополнительных расчетов, или же их нельзя будет сравнивать в принципе. Вот несколько примеров:

  • RMAA - К сожалению, в основе концепции RightMark Audio Analyzer отсутствует понятие абсолютных значений. Потому программа не может рассчитать уровень шума относительно некоторого заданного значения. Она пытается вычислить динамический диапазон в dBFS, но эти результаты являются субъективными и могут варьироваться в зависимости от настроек устройства (уровень громкости, уровень записи и т. д.), калибровки и проч. Вообще, измерения шумовых характеристик с помощью RMAA редко бывают точными, и собственные шумы оборудования ПК зачастую больше, чем то, что вы хотите измерить. Некоторые параметры, анализируемые RMAA, собственно, присутствуют там «для галочки», и это один из них.

  • дБВ и dBr - Если устройство A имеет уровень шума –100 дБВ, а устройство B - –108 dBr (опорный уровень 10 В), с первого взгляда кажется, что шумы устройства B на 8 дБ меньше. Но для A значение указано по отношению к 1 В, а для B - к 10 В. Разница равна 20*Log(10/1) = 20 дБ. Так что в действительности для B по отношению к 1 В уровень будет на 20 дБ выше, т. е. –88 дБВ. Смотрите базовые преобразования ниже.

  • dBu в дБВ - Эти значения схожи. Для преобразования из дБВ в dBu уменьшите модуль значения на 2.2 дБ. Для обратного преобразование увеличьте модуль на 2.2 дБ.

  • dBr (400 мВ) в dBv - Я обновил результаты своих собственных замеров, преобразовав dBr с опорным уровнем 400 мВ в дБВ (опорный уровень 1 В). Для такого преобразования модуль значения надо увеличить на 8 дБ (для обратного - уменьшить).

  • Базовые преобразования - Суть заключается в добавлении или вычитании 20 * Log(Vref1 / Vref2) дБ. Чем ниже опорный уровень, тем больше будет относительный показатель шума. Также уровень может задаваться по отношению к мощности (вместо напряжения). В этом случае значение рассчитывается как 10 * Log (Pref1 / Pref2).
    • дБВ в Вольты - 10^(дБВ / 20)
    • –96 дБ в Вольты - 10^(–96/20) = 16 мкВ (0.000016 В)
    • Вольты в дБВ = 20 * log (В)

  • Различные типы взвешивания - Невозможно в точности сравнивать значения, плученные с использованием различного взвешивания, т. к. они зависят от частотного распределения шума. Например, усилитель со значительным уровнем гула будет иметь меньшее взвешенное значение шума, чем усилитель с равномерно распределенным шумом. В большинстве случаев, однако, следует ожидать, что взвешивание по типу А даст значение уровня шумов на 3–6 дБ ниже, чем невзвешенное.

Импеданс источника

Тепловые шумы зачастую являются главным источником шумов в предусилителях и усилителях для наушников. А они пропорциональны импедансу входной цепи, включающей также и источник. Чем выше импеданс источника, тем больше шумы. Так, например, усилитель для наушников исправно работает от источника с импедансом 100 Ом, но использование источника с импедансом 10 кОм может легко привести к слышимым шумам. В данном случае шумы, которые вы слышите, в действительности продуцируются входным устройством, а не усилителем. .

Измерение шумов

Так как значение уровня шумов является суммой составляющих в диапазоне звуковых частот, а также обычно является очень низким, измерить его точно - весьма проблематично. Лучшее high-end оборудование для ПК может иметь достаточно низкую шумовую полку, но в то же время редко позволяет делать замеры при максимальном значении на выходе устройства. И, что еще более важно, звуковое оборудование ПК не позволяет установить абсолютное значение - в В, дБВ и т. п. Лишь немногие цифровые мультиметры имеют достаточное разрешение и достаточно низкий уровень собственных шумов для замеров с точностью до мкВ в диапазоне 20-20000 Гц. Теоретически можно временно откалибровать 24-битную звуковую карту, используя точный измерительный прибор и соответствующие тестовые сигналы. Но здесь есть множество нюансов, зависящих от используемого ПО. Импеданс источника также является проблемой. Разработчики предпочитают при измерениях замыкать входные контакты устройства для получения лучших показателей шума, однако более близкие к реальным результаты можно получить, подключив на вход шунтирующее сопротивление близкое по значению к импедансу типичного источника. Если же вы попытаетесь использовать реальный источник, его шумы будут включены в результат измерений (как в случае с RMAA). При тестировании ЦАП необходимо использовать сигналы очень низкого уровня, так как если на ЦАП совсем ничего не подавать, он полностью отключится и покажет результаты, не соответствующие действительности. Практически любой качественный звуковой анализатор сможет исключить этот низкоуровневый сигнал из результатов, оставив только шум.

Измерения с помощью RMAA

Даже если вам удалось откалибровать уровни, вы всё равно не знаете, какие преобразования происходят внутри программы RMAA. Это магический «черный ящик», без какой-либо заслуживающей доверия документации, описывающей, каким образом программа рассчитывает выходные значения. Какой частотный диапазон был использован? Является результат взвешенным или невзвешенным? Плюс ко всему, в результаты включен неизвестный нам уровень шумов используемого оборудования. В итоге, лучшим способом измерить шумы является использование анализаторов Audio Precision и Prism Sound.

Заключение

Шумы на уровне –105 дБВ (по отношению к 1 В) практически всегда оказываются неслышимыми. Уровень шумов в районе -95 дБВ является приемлемым для большинства слушателей. Значения уровня шумов, заданные в других величинах должны быть предварительно преобразованы в дБВ или аналогичные единицы, прежде чем их можно будет сравнивать. Результаты, полученные с помощью RMAA, обычно неинформативны, т. к. по ним нельзя определить абсолютные значения. RMAA может определить лишь динамический диапазон, и то не всегда, т. к. зачастую сложно правильно настроить уровни без специального оборудования.

Оригинал статьи на английском: Noise & Dynamic Range

Что представляет собой шум, как его измерить, в каких величинах. Что такое динамический диапазон, и чем он отличается от уровня шумов.

Заметки или учебник раскрывающие суть отношения сигнал/шум, ОСШ, измерения отношения сигнал/шум, и формулы отношения сигнал/шум.

Шумовые характеристики а, следовательно, и отношение сигнал/шум - это ключевые параметры для любого радиоприемника. Отношение сигнал/шум, или ОСШ, как его часто называют - это характеристика чувствительности приемника. Это имеет первостепенную важность для всех приложений, от простых радиопередающих устройств, до тех, которые используются в сотовой или беспроводной связи, а также в фиксированной или подвижной радиотелефонной связи, двусторонней радиосвязи, систем спутниковой связи и многих других.

Существует ряд способов, при которых шумовая характеристика, и, следовательно, чувствительность радиоприемника могут быть измерены. Наиболее очевидным методом является сравнение сигнала и шума для известного уровня сигнала, т. е. отношение сигнал/шум (С/Ш) или ОСШ. Очевидно, что чем больше разница между сигналом и нежелательным шумом, т. е. чем больше соотношение С/Ш или ОСШ, тем лучше чувствительность радиоприемного устройства.

Как и в случае измерения любой чувствительности, производительность радиоприемника в целом определяется производительностью последнего каскада УРЧ. Любые шумы, которые поступили на вход первого каскада УРЧ, будут суммироваться с сигналом и усиливаться в последующих усилительных каскадах приемника. В случае, когда шумы, поступившие в первые каскады УРЧ, будут в наибольшей степени усиливаться, этот УРЧ станет наиболее критичным, с точки зрения чувствительности приемника, по производительности. Таким образом, первый усилитель любого радиоприемника должен быть малошумящим.

Концепция отношение сигнал/шум ОСШ.

Хотя существует множество способов измерения чувствительности радиоприемника, отношение C/Ш или ОСШ является одним из самых простых и применяется во множестве приложений. Однако оно имеет ряд ограничений и, несмотря на то, что оно широко используется, другие методы, в том числе коэффициент шума, также часто используются. Тем не менее, отношение С/Ш или ОСШ является важным показателем и широко используемой мерой чувствительности приемника.

Разница обычно определяется как отношение сигнала к шуму (С/Ш) и, как правило, выражается в децибелах. Так как уровень входного сигнала, очевидно, имеет влияние на это отношение, уровень входного сигнала должен быть известен. Он обычно выражается в микровольт. Как правило, определенный уровень входного сигнала, необходимый, чтобы величина отношения сигнал/шум составляла 10 дБ, задан.

Формула отношения сигнал/шум

Отношение сигнал/шум - это отношение между полезным сигналом и нежелательным мешающим шумом.

Более привычно видеть отношение сигнал/шум, выраженное в логарифмических единицах с использованием децибел:

Если все составляющие выразить в децибелах, то формула может быть упрощена до:

Значение мощности может быть выражено в таких уровнях, как дБм (децибел относительно милливатта или каких-то других величин, уровни которых можно сравнить).

Влияние ширины полосы пропускания на ОСШ

Ряд других факторов, помимо основных показателей, могут повлиять на отношение сигнал/шум, ОСШ. Первый фактор - это реальная пропускная способность приемника. Поскольку шум распространяется во всем диапазоне частот, то обнаружили, что чем шире полоса пропускания приемника, тем выше уровень шума. Соответственно полоса пропускания приемника должна быть определена.

Кроме того, установлено, что использование амплитудной модуляции влияет на уровень модуляции. Чем выше уровень модуляции, тем выше аудиосигнал на выходе приемника. При измерении уровня шума измеряется и выходной аудиосигнал приемника и, соответственно, уровень модуляции AM на него влияет. Обычно коэффициент модуляции, соответствующий 30 %, выбран для этого измерения.

Спецификация отношения сигнал/шум

Данный метод измерения эффективности, наиболее часто используется для ВЧ приемников. Как правило, можно ожидать фигуру отношение С/Ш в районе 0,5 мкВ на 10 дБ полосой частот в 3 кГц с ОБП или Морзе. Для АМ можно ожидать отношение С/Ш в 1,5 мкВ на 10 дБ и полосой частот в 6 кГц при уровне модуляции (АМ) 30 %.

На что следует обратить внимание при измерении отношения сигнал/шум

ОСШ - это очень удобный способ количественной оценки чувствительности приемника, но существуют некоторые моменты, которые следует учитывать при интерпретации и измерения отношения сигнал/шум. При исследовании этого необходимо обратить внимание на способ измерения отношения сигнал/шум, ОСШ. Откалиброванный генератор ВЧ сигналов используется в качестве источника сигнала для приемника. Он должен иметь точный метод настройки выходного уровня до очень низких уровней сигнала. Затем на выходе приемника универсальным вольтметром переменного тока, измеряется уровень выходного сигнала.

С/Ш и (С+Ш)/Ш. При измерении отношения сигнал/шум имеются две основные величины измерения. Одна - это уровень шума, а другая - уровень сигнала. Как результат способа, с помощью которого сделаны измерения, часто измерение полезного сигнала также включает в себя шум, т. е. это измерение сигнал + шум. Это, как правило, не является слишком большой проблемой, так как уровень сигнала, как и предполагалось, будет намного выше, чем уровень шума. В связи с этим некоторые производители приемников будут указывать несколько иное отношение: а именно сигнала и шума к шуму (С+Ш)/Ш. На практике разница не большая, но отношение (С+Ш)/Ш является более корректным.

РП и ЭДС. Иногда в спецификации генератора сигналов упоминается, что это либо генератор разности напряжений, либо генератор ЭДС. На самом деле это очень важно, потому что существует коэффициент, равный 2: 1 между двумя уровнями. Например, 1 мкВ ЭДС и 0,5 мкВ РП одинаковы. ЭДС (электродвижущая сила) - это напряжение холостого хода генератора, в то время как РП (разность потенциалов) измеряется при нагруженности генератора. Результат способа работы схемы генератора предполагает, что приложена действительная нагрузка (50 Ом). Если нагрузка не равна этому значению, то возникнет ошибка. Несмотря на это, большая часть оборудования будет принимать значения в PП, если не указано иное.

Хотя существует много параметров, которые используются для указания характеристики чувствительности радиоприемников, отношение сигнал/шум является одним из основных и легко понимаемых. Поэтому широко используется для различных радиоприемников, используемых в приложениях, начиная от радиоприема до фиксированной или подвижной радиосвязи.

Соотношение сигнал/шум (его часто обозначают S/N или SNR) определяет силу сигнала относительно фонового шума канала передачи данных, а также устройства обработки сигнала или электронного устройства. Это соотношение определяет качество передачи данных. Если уровень фонового шума в канале высок, это может привести к снижению скорости передачи данных, поскольку передающий компьютер будет вынужден многократно посылать пакеты данных, которые не были прочитаны адресатом из-за слишком высокого уровня шума.

Шум - серьезный враг систем передачи данных. В какой бы среде ни «путешествовали» электроны, они порождают определенный электромагнитный шум. Когда сигнал передается по каналу связи, например по медному проводу или при трансляции в радиочастотном диапазоне, его всегда сопровождают фоновые электромагнитные помехи, или шум.

Соотношение сигнал/шум (S/N) - это количество нежелательного электромагнитного шума, отнесенное к силе сигнала. Если фоновый шум в канале передачи данных выше, чем сигнал, это может привести к снижению скорости передачи данных или нарушению стабильности работы системы.

Вот почему пассажирам запрещают пользоваться любыми электронными устройствами (в том числе сотовыми телефонами и мобильными компьютерами) на протяжении всего авиаперелета или по крайней мере во время взлета и посадки. Это меры предосторожности, которые гарантируют, что шум от таких устройств не повредит навигационной системе самолета, хотя, по общему признанию, это маловероятно.

Шум в проводах

В проводных системах проблемы, связанные с уровнем шума, разрешаются довольно просто в силу относительной замкнутости систем. Рассмотрим обычную локальную сеть, в которой низкоуровневые шумы от радио и других устройств могут вызвать помехи. Сеть Ethernet, работающая на частоте 10 МГц, в точке приема сигналов использует фильтр, чтобы отсечь сигналы, по частоте превышающие 10 МГц. Еще один способ увеличить соотношение S/N - повысить мощность сигнала.

Стандарты задают уровень электромагнитных помех в разрешенном для производства оборудовании, с тем чтобы минимизировать помехи при передаче данных.

Целая область электросвязи посвящена способам максимального увеличения силы сигнала относительно нежелательного электромагнитного шума. В некоторых сложных устройствах, таких как радиотелескопы, для минимизации электромагнитных помех температуру микроэлектронных компонентов снижают почти до абсолютного нуля (-273°С).

Из-за высокого уровня электромагнитных помех компьютеру-отправителю, возможно, придется повторно передавать пакеты данных, которые пришли адресату искаженными из-за шума в проводном соединении. Это вызывает задержку получения передаваемых данных.

Вопросу подавления шумов в беспроводных коммуникациях уделяется особое внимание, поскольку электромагнитные помехи могут серьезно повлиять на передачу сигнала. Дело в том, что при беспроводных соединениях сигнал относительно слаб и к тому же затухает с большой скоростью - обратно пропорционально площади, «пройденной» сигналом, распространяющемуся по всем направлениям.

Неустойчивый сигнал

На качестве передачи сигнала сказывается и то, что может существовать множество источников электромагнитных помех, в том числе и окружающая среда. Силовые кабели и ретрансляционные вышки способны порождать весьма значительные электромагнитные помехи. Стены зданий могут блокировать или ослаблять сигналы.

Отражающие поверхности, такие как металлический забор и даже облака, могут задерживать сигналы. Поэтому один и тот же сигнал может быть получен из разных направлений в разное время, что вызывает искажение.

Один из способов минимизации уровня шума при беспроводных соединениях - это смена частот (frequency hopping), используемая в Bluetooth и в стандарте IEEE 802.11.

Передатчик посылает сигнал на одной частоте в течение заранее определенного короткого промежутка времени (речь идет о миллисекундах), затем переходит на другую частоту и передает сигнал в течение другого промежутка времени и т. д. Порядок и продолжительность изменения частот определяет конкретный алгоритм, а поскольку сигнал использует каждую из задействованных частот только в течение короткого периода времени, вероятность возникновения помех или искажения сигнала снижается.

И все же вопрос о S/N не теряет своей остроты. В 2001 году стоит ожидать появления множества устройств, использующих технологию Bluetooth.

На первый взгляд Bluetooth было бы совершенно естественно использовать для получения диагностической информации от машины, но до того момента, как подобные устройства будут устанавливаться в автомобилях, пройдет еще немало времени. И все из-за электромагнитных помех.

«Нам необходимо быть уверенными в том, что подобные устройства не вызовут помех в остальных системах автомобиля, - отметил Майк Хичме из корпорации General Motors. - Всякий раз, когда микропроцессор или коммутатор передает сигнал с помощью беспроводной связи, он может вызывать помехи в других системах автомобиля».

Если сигнал слабый , то иногда его заглушет фоновый шум. Для электронных систем это может быть остаточный шум компонентов устройства, космические лучи, помехи от других электронных устройств и многое другое. Как можно видеть из представленной диаграммы, когда уровень сигнала опускается ниже фонового шума, его информационное наполнение теряется. Если сигнал сильный, то даже его самые слабые фрагменты не искажаются из-за шума и, таким образом, может поддерживаться большее различие в интенсивности (например, громкости) между самыми низкими и самыми высокими значениями сигнала. Величина, на которую максимальная интенсивность сигнала превышает минимальный уровень, когда этот сигнал еще можно выявить (то есть шумовой порог), называется динамическим диапазоном и обычно измеряется в децибелах.

Долой шум

Термин сигнал/шум первоначально возник в области разработки электрических схем как специальный количественный параметр, однако саму концепцию будет вполне справедливо применить к любому методу связи.

Например, дым костров может быть эффективным средством передачи сигналов на дальние расстояния, правда, до тех пор, пока не помешает природный «шум» - скажем, туман или дождь.

Или представьте себе место, где одновременно разговаривают десятки людей. Если вы хотите поговорить с кем-нибудь, то придется встать к своему собеседнику настолько близко, чтобы ваш голос (сигнал) можно было услышать сквозь звуки разговора окружающих (шум). Другими словами, необходимо добиться достаточно высокого соотношения S/N.

Наконец, обратите внимание на тысячи групп новостей, известных под общим названием Usenet. Мне часто приходится слышать от опытных пользователей (и, безусловно, самому сталкиваться с этим достаточно часто), что у многих групп REC (развлекательных) или ALT (альтернативных, то есть полностью неуправляемых), «недостаточно высокое соотношение сигнал/шум». Другими словами, слишком много людей публикуют сообщения, не несущие в себе, по сути, никакой информации; это часто случается, когда разгораются страсти вокруг какого-то, вообще говоря, пустякового вопроса.