Тихое жужжание кулеров. Кулер и охлаждение процессора Схема подключения вентилятора охлаждения компьютера

Устройство кулера или как работает вентилятор обдува?

В статье описывается принцип работы и устройство вентилятора компьютера/ноутбука. Не сказал бы, что содержание статьи окажется жизненно необходимым для пользователей, однако небольшой мастер-класс по устройству начинки вашего программно-цифрового друга не помешает никому.

Итак, есть компьютер – значит есть и система охлаждения некоторых компонентов. В том числе и активная, которая подразумевает ряд приспособлений для принудительного теплоотвода. А значит, как минимум несколько шумящих вентиляторов в компьютере гарантировано. Какие типы вентиляторов обдува электронных компонентов бывают, вам известно по статье . Сейчас речь о его начинке.

Устройство кулера: разбираем.

Большинство вентиляторов поддаются демонтажу и ревизии. Снимем наклеенный шильдик со стороны проводов, открыв доступ к пластиковой/резиновой заглушке, которую и извлекаем:

Подцепим пластмассовое или металлическое полукольцо любым предметом с острым концом (нож канцелярский, часовая отвёртка с плоским шлицем и т.п.) и снимаем с вала. Взору открывается моторчик, работающий от постоянного тока по бесщёточному принципу. На пластиковой основе ротора с крыльчаткой по кругу вокруг вала закреплен цельнометаллический магнит, на статоре – магнитопровод на медной катушке. При подаче напряжения на статор вал кулера начинает вращаться. Номинал напряжения – 12 Вольт:

жало отвёртки приклеилось к цельнометаллическому магнитопроводу

Щёточных механизмов для кулера я не видел. Есть подозрение, что у всех таких вентиляторов бесщёточный механизм вращения: это, всё-таки, надёжность, экономичность, низкая шумность и возможность регулировки. Но перед тем, как перейти к электрической схеме, вспомним, что кулеры бывают нескольких типов по принципу подключения:

Однако помните. Если, например, вас заинтересует установленный внутри датчик, кулером, скорее всего, придётся пожертвовать. Почти все эти устройства неремонтопригодны.

Устройство кулера 2-pin

Простейший кулер с двумя проводами. Наиболее частая цветность: чёрный и красный . Чёрный – рабочий “минус” платы, красный – питание 12 В . Его, кулера, назначение – дуть что есть сил по принципу “включился-выключился”:

  • катушки создают магнитной поле, которое заставляет ротор крутиться внутри магнитного поля, создаваемого магнитом
  • датчик Холла оценивает вращение (положение) ротора.

Некоторые из таких кулеров ещё выпускаются и с 4-х пиновым молекс-разъёмом, подразумевая возможность питаться напрямую от блока питания.

Устройство кулера 3-pin

Это – наиболее распространённый тип обдувальщика. Если с минусом и 12 вольтовым проводами вы знакомы, то здесь появляется третий, “тахо”-проводок. Он садится напрямую на ножку датчика, и схема принимает вид:

Да, в своё время это была настоящая инновация – отслеживать скорость оборотов машины. Пригодилась она и пользователям компьютеров. И вот здесь в цветности проводов начинается разнобой, в котором, впрочем, есть тенденции. Мне почти всегда встречались кулеры с такой цветностью проводов на разъёме:


Устройство кулера 4-pin

Самый модерновый вариант. Здесь скорость вращения можно не только считывать, но и изменять. Это делается при помощи импульса от материнской платы. Теоретически регулироваться могут все кулеры, но этот представитель способен в режиме реального времени возвращать информацию на тахогенератор (3-х штырьковый на это уже физически неспособен, так как датчик и контроллер сидят на одной ветке питания). Если вы пустите сигнал на датчик и тахо, они просто уйдут в параллель и процесс регулировки и считывания будет некорректным. Так что только 4 штырька под “отдельно стоящие” сигналы.

В процессе реанимации и модернизации усилителя Солнцева пришлось избавиться от громоздкого блока питания выполненного на трансформаторе ТС-180. Был изготовлен импульсный блок питания на IR2153 мощностью 200 Вт. Однако в процессе эксплуатации при снимаемой мощности порядка 130 Вт был выявлен нагрев импульсного трансформатора. Не критичный, но все же присутствовал. Кроме того, достаточно заметно грелись стабилизаторы L7815, L7915. Установить большие радиаторы не позволял плотный монтаж на плате.

Для устранения данного эффекта решил применить кулер. Выбор остановился на малогабаритном вентиляторе мощность 0,96 Вт при питании 12 вольт и токе потребления 0,08 А. Так как трансформаторный БП для него будет иметь неприемлемые массогабаритные размеры, решил собрать с гасящим конденсатором.

Схема

Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой емкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:

где f — частота сети (50 Гц); С —емкость конденсатора С1, Ф. Тогда выходной ток источника можно приблизительно определить так:

где Uc — напряжение сети (220 В).

При токе потребления 0,08 А емкость С1 должна иметь номинал 1,2 мкф. Ее увеличение позволит подключить нагрузку с большим током потребления. Приблизительно можно ориентироваться на 0,06 А на каждую микрофараду емкости С1. У меня под рукой оказался 2,2 мкф на 400 вольт.

Резистор R1 служит для разряда конденсатора после выключения БП. Особых требований к нему нет. Номинал 330 кОм - 1 Мом. Мощность 0,5 - 2 Вт. В моем случае 620 кОм 2 Вт.

Конденсатор С2 служит для сглаживания пульсаций выпрямленного мостом напряжения. Номинал от 220 мкф до 1000 мкф с рабочим напряжением не менее 25 вольт. Мною был установлен 470 мкф на напряжение 25 вольт.

В качестве выпрямительных диодов применены 1N4007 из отработавшей свое энергосберегающей лампы.

Стабилитрон (12 Вольт) служит для стабилизации выходного напряжения и его заменой можно добиться практического любого необходимого напряжения на выходе БП.

При сборке схемы следует иметь ввиду, что подключение вентилятора следует выполнить безошибочно изначально. Ошибка в неправильной полярности припаивания проводов вентилятора приведет к выходу вентилятора из строя. А само подключение (припаивание) следует выполнить, заранее, поскольку напряжение на холостом ходу в точках присоединения вентилятора может составлять 50-100 вольт. Если полярность безошибочна (красный провод, это плюсовая шина питания), то при включении в сеть 220 В на вентиляторе будет примерно +12 вольт.

Печатная плата выполнена методом ЛУТ. Травление проводилось перекисью водорода, лимонной кислотой и поваренной солью из расчета 50 мл перекиси, 2 ч.л. кислоты и чайная ложка соли.

В дополнение привожу схему (может кому понадобится) регулировки частоты вращения вентилятора.

По сути, это регулятор напряжения, подаваемого на двигатель вентилятора. Изменение напряжения приводит к изменению частоты вращения вентилятора. В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, чтобы даже при самых низких оборотах, т.е. при самом низком напряжении, обеспечить его надёжный запуск.

Электродвигатели, применяемые в компьютерных вентиляторах, построены по несколько иному принципу. Соответственно своему имени, такие моторы не имеют щёточно-коллекторного узла со скользящими контактами.

В предыдущем разделе статьи было объяснено, что у brushed двигателей в движение приводится центральная часть с электромагнитом и обмоткой, тогда как постоянные магниты стационарны. Brushless двигатели, напротив, сконструированы таким образом, что индуктор в виде магнитов находится в роторе, а обмотка - в статоре.

В случае с компьютерными кулерами, магниты прикреплены к крыльчатке с лопастями вентилятора и зафиксированным валом. Данная конструкция в рассматриваемой системе и будет считаться ротором. Тогда статором окажется рамка вентилятора с необходимыми компонентами, такими как неподвижный электромагнит, и местом сочленения статора и ротора, в котором и располагаются интересующие нас подшипники.
Бесколлекторные моторы могут иметь различное число катушек, в интересующих нас вентиляторах их обычно восемь. Если разобрать такой вентилятор, в глаза сразу же бросятся четыре Т-образных металлических “руки”, причем на каждой из них будет присутствовать двойная обмотка (на следующей фотографии легко различить красный и жёлтый медные провода).
Естественно, в вентиляторах для питания различных катушек используются не громоздкие провода, а компактные печатные платы. Хотя существуют сложные и функциональные бесколлекторные двигатели с большим количеством обмоток и соответствующих им фаз (например, двигатели НЖМД обычно бывают трёхфазными), в вентиляторах устанавливают простые двухфазные двигатели. Для запуска и вращения им достаточно синусной и косинусной составляющих тока. Сама движущая сила brushless моторов не отличается от коллекторных двигателей, только в бесколлекторных электромоторах уже на сами обмотки напряжение подается таким образом, чтобы отталкивать постоянный магнит ротора и поддерживать постоянное вращение последнего.
Максимально упрощенные бесколлекторные вентиляторы оснащаются лишь двумя проводами для подачи питания. Дополнительно может присутствовать третий провод, который необходим для обратной связи кулера с (или другой платой, если речь идет, например, о ). Показания таких вентиляторов преобразуются специальными чипами в количество оборотов в минуту (RPM), и это понятное человеку число может быть считано в BIOS или с помощью специальных программ для мониторинга. Добавление такой возможности несколько удорожает схему, однако сегодня вентилятор без датчика числа оборотов можно встретить только на самых бюджетных компьютерных устройствах.

Повторимся - это очень упрощенное описание алгоритма работы бесколлекторных двигателей, однако его вполне достаточно для понимания работы компьютерных вентиляторов.

Стоит сказать и о преимуществах моторов такого типа над коллекторными двигателями: они существенно менее шумны, никаких искр от соприкосновений контактов возникнуть не может, а надежность устройств такого типа заметно выше.

В данной схеме управление вентилятором или кулером системы охлаждения происходит по сигналу термистора в течении заданного периода времени. Схема простая, собрана всего на трех транзисторах.

Эта система управления может быть использована в самых разных областях жизни, где необходимо охлаждение посредством вентилятора, например, охлаждения материнской платы ПК, в усилителях звука, в мощных блоках питания и в иных устройствах, которые в ходе своей работы могут перегреваться. Система представляет собой сочетание двух устройств: таймера и термореле.

Описание работы схемы управления вентилятором

Когда температура низкая, сопротивление термистора высокое и, следовательно, первый транзистор закрыт, потому что на его базе напряжение ниже 0,6 вольт. В это время конденсатор на 100 мкФ разряжен. Второй PNP-транзистор так же закрыт, поскольку напряжение на базе равно напряжению на его эмиттере. И третий транзистор так же заперт.

При повышении температуры, сопротивление термистора уменьшается. Таким образом, напряжение на базе первого транзистора увеличивается. Когда это напряжение превысит 0,6 В, первый транзистор начинает пропускать ток заряжая конденсатор 100 мкФ и подает отрицательный потенциал на базу второго транзистора, который открывается и включает третий транзистор, который в свою очередь активирует реле.

После того, как вентилятор включается, температура уменьшается, но конденсатор 100 мкФ разряжается постепенно, сохраняя работу вентилятора в течение некоторого времени после того, как температура приходит в норму.

Подстроичный резистор (показан на схеме как 10 ком) должен иметь значение сопротивления около 10% от сопротивления термистора при 25 градусах. Термистор применен марки EPCOS NTC B57164K104J на 100 кОм. Таким образом, сопротивление подстрочного резистора (10%) получается 10 кОм. Если вы не можете найти эту модель можно использовать другой. Например, при использовании термистора 470 кОм сопротивление подстроичного составит 47 кОм.

Схема подключения вентилятора с питанием от 12 вольт.

Схема подключения вентилятора с питанием от 220 вольт

В печатной плате можно увидеть два подстроичных резистора. Первый на 10 кОм для регулирования порога срабатывания вентилятора, второй на 1 мОм позволяет регулировать время работы после нормализации температуры. Если вам нужен больший интервал времени, то конденсатор на 100 мкФ можно увеличить до 470 мкФ. Диод 1N4005 используется для защиты транзистора от индуктивных выбросов в реле.

Решил для охлаждения некоторых деталей использовать высокоскоростной кулер от ноутбука. В магазине аксессуаров компьютера был куплен данный вентилятор, стоил он 8$. Кулер служил верой и правдой более месяца и сломался из-за моей ошибки. Дело в том, что такой кулер может работать в двух режимах, я же подключил скоростной. Видимо они не приспособлены работать часами в этом режиме, скорее всего именно по этой причине кулер откинул копыта.

Ну раз уж случилось, нужно его оперировать! Сначала снимается сам винт, в этом кулере он больше похож на турбину, лопастей как минимум в 2-2,5 раза больше, чем в обычных .

Затем аккуратно нужно отделить статор от пластмассового основания. На самом деле это очень трудно и очень часто основание ломается.

Далее мы можем увидеть сам таходатчик мотора, который собственно и заводит движок. С обратной стороны платы на SMD компонентах собран датчик, который является генератором прямоугольных импульсов, они и питают обмотки статора двигателя.

Сначала внимательно смотрим на плату, если есть обрывы, то припаиваем перемычку и пробуем завести двигатель.

В моем случае ничего не получилось и было решено модернизировать мотор. Заранее с платы выпаиваются все SMD компоненты и перемычки.

Для мода был взят рабочий кулер от компьютерного БП ATX. Он был не совсем рабочий (были сломаны лопасти), но основная плата с драйвером работала. Снимаем винт, затем вынимаем плату.

На плате можно увидеть драйвер - который питает весь двигатель. Выпаиваем из платы статор. Смотрим на подключение обмоток статора - обычно 3 вывода, на один из выводов идут два конца обмоток, на остальные два вывода по одному проводу.

Вывод с двумя концами - подключается к плюсу питания, плюс подают также на первую ногу драйвера. Второй и третий вывод драйвера идут к свободным контактам (тут нет фазировки и полярности).

Наконец, последняя нога драйвера - минус питания.